DJa,ngo vs Fla,sk

DJa,ngoCon 201'7 Spoka,ne WA

-_shdes./b1t.1y/d3a,ngocon-ﬂask -

DaV1d "DB" Ba,umgold
@smgmgwolfboy

Shameless Plug
Hi, I'm DB!

o Freelance web developer
o Corporate trainer

e Serial conference
presenter

o Friendly & helpful

-

Hire me: davidbaumgold.com

https://www.davidbaumgold.com

Let's talk about

Python & web dev.

@ZOPE @ Plone:

dJango

‘oo 0
pyramid

g CherryPy B@t‘"e i

web development,
one drop at a time

sSurprising Beginnings

README
DOCUMENTATION
CODE

ABOUT

THE NEXT GENERATION PYTHON MICRO-
WEB-FRAMEWORK

A COMPLETELY DENIED No installation or configuration required. No dependencies other than

APPLICATION the Python standard library. Just get a copy of deny.py, place it into
your project directory and start coding.

from deny import *
@route('/")
def hello():

return '"Hello World!'

if name =="' main "
run()

That's it! Now run your application and go to http://localhost:5000/
and your application will greet you!

WATCH THE Not sold yet? Watch the screencast to see how easy it is to write a
SCREENCAST scalable web 2.0 application with denied: walch in quicktime format

Flask started in 2010,
as an April Fools Day joke!

O language:Python Pull requests Issues Marketplace Gist

Repositories 390K Code Commits Issues 6M Wikis Users 671K
Showing 390,433 available repository results ® e e

pallets/flask @ Python

A microframework based on Werkzeug, Jinja2

and good intentions

python flask web-framework wsgi

Updated a day ago

rg3/youtube-dl @ Python * 28.1k

Command-line program to download videos
from YouTube.com and other video sites

Updated an hour ago

django/django @ Python
The Web framework for perfectionists with
deadlines.

python django views framework orm

Updated an hour ago

requests/requests @ Python * 26.7k

 DuthAan LITTD Danticacte far LhiimmaneTM (<&

Why is Flask
SO popular®?

Is it better
than Django?

Django is large.

Flask 1s smaill.
Both are good!

2

Hello World in Flask

Create hello. py:

from flask import Flask
app = Flask(_ name)

@app.route("/")
def hello():
return "Hello World!"

Then run:

$ FLASK APP=hello.py flask run

Hello World in Django

Set up your project:

$ django-admin startproject project
$ cd project
$ python manage.py startapp hello

Edit project/settings.py:
INSTALLED APPS = |

"hello’,

Hello World in Django

Edit hello/views. py:
from django.http import HttpResponse

def hello(request):
return HttpResponse("Hello World!")

Hello World in Django

Edit project/urls.py:

from django.conf.urls import url
from hello import views

urlpatterns = |
url(r'~$', views.hello),

]

Then run:

$ python manage.py runserver

Comparison

® Django is more intimidating to
beginners than Flask

o Django has a steeper learning curve:
settings, regular expressions, etc

o Flask allows single-file projects

Data Models in Django

Defining a model:

from django.db import models

class BlogPost(models.Model):
title = models.CharField(max length=200)
content = models.TextField()
pub date = models.DateTimeField()

Data Models in Django

Manipulating data:
bp = BlogPost()

bp.title = "DjangoCon”
bp.save()

Querying data:
BlogPost.objects
.filter(title="DjangoCon")
.all()

Data Models in Flask

Flask doesn't have

data models!

&

Data Modeling

SQLAIchemy Peewee
ORM MongoEngine ORM
ODM

Flask is Extensible

e Flask is intentionally minimalist.

e Flask includes templating, URL routing,

error handling, and a debugger. That's
all.

o All other functionality is delegated to
extensions. Pick and choose the
functionality that you want!

Flask-SQLAlIchemy

Install with pip:
$ pip install Flask-SQLAlchemy

5 Import and configure:
from flask import Flask
from flask_sqglalchemy import SQLAlchemy

gapp = Flask(__name__)
~app.config['SQLALCHEMY_DATABASE_URI'] = \
| 'sqlite:////tmp/test.db’

%db = SQLAlchemy(app)

Flask-SQLAlIchemy

Defining a model:

class BlogPost(db.Model):
title = db.Column(db.String(200))
content = db.Column(db.Text)
pub date = db.Column(db.DateTime)

SQLAIlchemy

class BlogPost(db.Model):
title = db.Column(db.String(200))
content = db.Column(db.Text)
pub date = db.Column(db.DateTime)

Django ORM

from django.db import models

class BlogPost(models.Model):
title = models.CharField(max_length=200)
content = models.TextField()
pub date = models.DateTimeField()

Flask-SQLAlchemy

Manipulating data:
bp = BlogPost()
bp.title = "DjangoCon”
db.session.add(bp)

db.session.commit()

Querying data:
BlogPost.query
.filter by(title="DjangoCon")
.all()

Comparison

e Django’s data models are easier to get started:
they are built-in to the framework.

e Django assumes that you will use a relational
database. If you don't, it will fight you.

o Flask allows more flexibility to choose your
data model. More choices mean more
potential to screw something up.

Users & Admin

® Most dynamic web applications
have user accounts

® Most people want an admin
interface to manage these users

» How do Django and Flask compare?

Users in Django

e django.contrib.auth

® Built-in & easy

e Swapping user model is possible, but
tricky

® Need extra info for users? Make a
UserProfile model

Admin in Django

e django.contrib.admin

® Built-in & easy
o Highly customizable

o Fine-grained permission system

Users in Flask

e Not built-in

® Most people use "Flask-Login"
extension: generic, works with any
data model

Users in Flask

from flask login import UserMixin

class User(db.Model, UserMixin):
id = db.Column(
db.Integer, primary_ key=True)

username = db.Column(
db.String(255), unique=True)

password = db.Column(db.String(255))
active = db.Column(db.Boolean)

add whatever columns you want!

Users in Flask

g from flask login import current _user

 @app.route('/")
~ def index():
5 if current _user.1is _anonymous:
return render_template("splash.html")
else:
return render_template("user_home.html")

Users in Flask

§ from flask login import login required

% @app.route(-/settizfi;l////'
- @login_required

g def settings():
f return render_template("settings.html")

If not logged in: "403 Forbidden"

~ User Permissions in Flask

o "Flask-Principal” extension provides
fine-grained permissions

» Designed to work with or without
Flask-Login

e Similar to Django’s user permissions
system

Admin in Flask

e Most people use "Flask-Admin" extension

e Highly customizable Bootstrap themes

o Works with SQLAlchemy, MongoEngine,
or Peewee

o Designed to work with or without Flask-
Login and / or Flask-Principal

Admin in Flask

C' (® examples.flask-admin.org/sqla/simple/admin/user/

Example: SQLAlchemy Home = User Tag Post

List (25) Create With selected~
First Name Last Name Username Email
Harry Brown harry harry@example.com
Amelia Smith amelia amelia@example.com
Oliver Patel oliver oliver@example.com
Jack Jones jack jack@example.com
Isabella Williams isabella isabella@example.com
Charlie Johnson charlie charlie@example.com
Sophie Taylor sophie sophie@example.com
Mia Thomas mia mia@example.com
Jacob Roberts jacob jacob@example.com
Thomas Khan thomas thomas@example.com

Emily Lewis emily emily@example.com

-
.
-
-
-
-
.
-
.
.
-
-
.
-
-
.
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
-
-
.
.
-
-
-
-
-
-
-
-
-
.
-
-
-
.
-
-
.
.
-
.
-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-
.
-
.
.
.
-
-
.
-
.
.
-
~
.
.
.
-
.
.
.
.
.
-
-
-
.
.
.
.
-
"2
-
o
-
.
-
.
-
.
.
L
.
.
-
.
.
.
-
-
-
-
-
-
.
.
-
-
-
-
-
-
.
-
-
-
.
-
-
-
-
-

Admin in Flask

| | User - Example: SQLAIchemy x §

C | ©® examples.flask-admin.org/sqla/simple/admin/user/edit/?url=%2Fsqla%2Fsimple%2Fadmin%2Fuser%2F&id=1

Example: SQLAIlchemy Home = User Tag Post Tree

List Create Edit

First Name Harry
Last Name Brown
Username harry
Email harry@example.com
Posts % de Finibus Bonorum et Malorum - Part Il

Info Add Info

Save and Add Another Save and Continue Editing

.
-
-
-
-
-
.
-
-
.
-
-
.
-
-
.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
-
-
.
-
-
-
-
.
-
-
-
-
.
-
.
-
Ps
-
s
-
.
-
.
-
-
-
-
-
.
.
-
-
-
-
-
.
-
-
.
-
.
.
.
.
.
.
.
.
-
.
L
.
-
.
-
.
-
.
.
-
.
-
-
.
-
i
.
-
.
-
ot
.
.
.
.
-
.
.
P
b
.
o)
‘.
.
.
.o
-
-
'.
-
-
.
M
-
o
.
-
-
.
.
-
-
-
.
-
-
-
-
-

Flask-Security

e Since many people use the same set of
extensions, "Flask-Security" wraps them
all up into a single package

e User model, permissions, admin,
login forms, password reset emails...

e Works with SQLAlchemy, MongoEngine,
or Peewee

Comparison

® Django’'s user framework & admin are
built-in, and work well

e Flask requires multiple extensions
working together: steeper learning curve
(but Flask-Security makes this easier)

o Off-the-shelf vs extensive customization

Reusable Apps

e Reusable apps can help organize and
simplify large codebases

o All code related to one concept lives in one
place

e Shared libraries to handle common tasks
Example: user registration logic

» How do Django and Flask compare?

Apps in Django

o settings.INSTALLED APPS

e Django Packages (djangopackages.org)

e Many packages available; hard to
know which are good to use

e Hard to organize an existing project
into multiple apps

http://djangopackages.org

Blueprints in Flask

o Not quite the same as an app: blueprints are
instructions for how to extend an existing app

e Can be applied multiple times to the same
app in different ways

e Optional, but recommended for larger Flask
projects

o Familiar syntax, easy to get started

Blueprints in Flask

from flask import Flask
app = Flask(_ name)

@app.route("/")
def hello():
return "Hello World!"

Blueprints in Flask

from flask import Blueprint
hello bp = Blueprint('hello', @ name_)

@hello bp.route("/")
def hello():
return "Hello World!"

Blueprints in Flask

from flask import Flask
from yourapp.hello import hello bp

app = Flask(name)
app.register blueprint(hello bp)

Comparison

® Django apps are more
comprehensive, more numerous —
but also more complex

o Flask blueprints are simpler,
easlier to integrate into a project

Building APIs

o APIs are increasingly common for
web applications

o APIs often require ditferent patterns
compared to HITML webpages

» How do Django and Flask compare?

APIs in Django

o Django REST Framework. Just use it.

o Authentication policies, serializers,
extensive documentation, testing
tools... it's all included

o Multi-layered abstractions

APIs in Flask

o Multiple extensions working together

e Serialization: "Marshmallow'" module

» Marshmallow ecosystem includes
integrations with Flask, SQLAlchemy,
MongoEngine, etc

from flask marshmallow import Marshmallow
from flask login import current _user, login required
from yourapp.models import User

- initialize extension
ma = Marshmallow(app)

class UserSchema(ma.ModelSchema): define
class Meta:

model = User serialization
exclude = ["password’] schema
@app.route("/me") convert to JSON

@login_ required ‘/////
def me(): result

return UserSchema().jsonify(current user) l

{"1id": 1, "username": "example", "active": true}

Comparison

e Django REST Framework is amazing, but is
subject to the same restrictions as Django itself
(relational database, etc)

o Flask has all the same functionality with much
more flexibility, but you have to put it together
yourself

e Maybe someday there will be an extension
bundle for Flask that is similar to DRF: not yet

Which one do I choose?

Choose Django when...

e You're happy with all the choices Django
makes for you:
Django ORM, Django templates, etc

e You're not doing anything unusual

e You don't care to learn the details of how
things work, you just want something
that works

Choose Flask when...

e You disagree with one of Django's
choices, and want to do things differently

e You have unusual requirements that
require custom components

e You want to understand how the
plumbing of your application fits
together

Any Questions?

Django vs Flask

slides: bit.ly / djangocon-flask

David "DB" Baumgold
@singingwoltboy

