
Django vs Flask

David "DB" Baumgold
@singingwolfboy

DjangoCon 2017, Spokane WA

slides: bit.ly/djangocon-flask

Shameless Plug

Freelance web developer

Corporate trainer

Serial conference
presenter

Friendly & helpful

Hi, I'm DB!

Hire me: davidbaumgold.com

https://www.davidbaumgold.com

Let's talk about  
Python & web dev.

Surprising Beginnings

Flask started in 2010,  
as an April Fools Day joke!

Why is Flask  
so popular?

Is it better  
than Django?

Django is large.
Flask is small.
Both are good!

❤

Hello World in Flask

from	flask	import	Flask	
app	=	Flask(__name__)	

@app.route("/")	
def	hello():	
				return	"Hello	World!"

$	FLASK_APP=hello.py	flask	run

Then run:

Create hello.py:

Hello World in Django

$	django-admin	startproject	project	
$	cd	project	
$	python	manage.py	startapp	hello

Set up your project:

Edit project/settings.py:
INSTALLED_APPS	=	[
				...	
				'hello',	
]

Hello World in Django

from	django.http	import	HttpResponse	

def	hello(request):	
				return	HttpResponse("Hello	World!")

Edit hello/views.py:

Hello World in Django
Edit project/urls.py:

from	django.conf.urls	import	url	
from	hello	import	views	

urlpatterns	=	[
				url(r'^$',	views.hello),	
]

$	python	manage.py	runserver
Then run:

Comparison

Django is more intimidating to
beginners than Flask

Django has a steeper learning curve:  
settings, regular expressions, etc

Flask allows single-file projects

Data Models in Django

from	django.db	import	models	

class	BlogPost(models.Model):	
				title	=	models.CharField(max_length=200)	
				content	=	models.TextField()	
				pub_date	=	models.DateTimeField()

Defining a model:

Data Models in Django

BlogPost.objects	
								.filter(title="DjangoCon")	
								.all()

Manipulating data:

bp	=	BlogPost()	
bp.title	=	"DjangoCon"	
bp.save()

Querying data:

Data Models in Flask

Flask doesn't have  
data models!

😕

Data Modeling

Flask is Extensible

Flask is intentionally minimalist.

Flask includes templating, URL routing,  
error handling, and a debugger. That's
all.

All other functionality is delegated to
extensions. Pick and choose the
functionality that you want!

Flask-SQLAlchemy

$	pip	install	Flask-SQLAlchemy
Install with pip:

Import and configure:
from	flask	import	Flask	
from	flask_sqlalchemy	import	SQLAlchemy	

app	=	Flask(__name__)	
app.config['SQLALCHEMY_DATABASE_URI']	=	\	
				'sqlite:////tmp/test.db'	
db	=	SQLAlchemy(app)

Flask-SQLAlchemy

class	BlogPost(db.Model):	
				title	=	db.Column(db.String(200))	
				content	=	db.Column(db.Text)	
				pub_date	=	db.Column(db.DateTime)

Defining a model:

class	BlogPost(db.Model):	
				title	=	db.Column(db.String(200))	
				content	=	db.Column(db.Text)	
				pub_date	=	db.Column(db.DateTime)

from	django.db	import	models	

class	BlogPost(models.Model):	
				title	=	models.CharField(max_length=200)	
				content	=	models.TextField()	
				pub_date	=	models.DateTimeField()

SQLAlchemy

Django ORM

Flask-SQLAlchemy

BlogPost.query	
								.filter_by(title="DjangoCon")	
								.all()

Manipulating data:
bp	=	BlogPost()	
bp.title	=	"DjangoCon"	
db.session.add(bp)	
db.session.commit()

Querying data:

Comparison

Django's data models are easier to get started:
they are built-in to the framework.

Django assumes that you will use a relational
database. If you don't, it will fight you.

Flask allows more flexibility to choose your
data model. More choices mean more
potential to screw something up.

Users & Admin

Most dynamic web applications
have user accounts

Most people want an admin
interface to manage these users

How do Django and Flask compare?

Users in Django

django.contrib.auth

Built-in & easy

Swapping user model is possible, but
tricky

Need extra info for users? Make a
UserProfile model

Admin in Django

django.contrib.admin

Built-in & easy

Highly customizable

Fine-grained permission system

Users in Flask

Not built-in

Most people use "Flask-Login"
extension: generic, works with any
data model

Users in Flask
from	flask_login	import	UserMixin	

class	User(db.Model,	UserMixin):	
				id	=	db.Column(
								db.Integer,	primary_key=True)	
				username	=	db.Column(
								db.String(255),	unique=True)	
				password	=	db.Column(db.String(255))	
				active	=	db.Column(db.Boolean)	

				#	add	whatever	columns	you	want!

Users in Flask

from	flask_login	import	current_user	

@app.route('/')	
def	index():	
				if	current_user.is_anonymous:	
								return	render_template("splash.html")	
				else:	
								return	render_template("user_home.html")

Users in Flask

from	flask_login	import	login_required	

@app.route('/settings')	
@login_required	
def	settings():	
				return	render_template("settings.html")

If not logged in: "403 Forbidden"

User Permissions in Flask

"Flask-Principal" extension provides
fine-grained permissions

Designed to work with or without
Flask-Login

Similar to Django's user permissions
system

Admin in Flask

Most people use "Flask-Admin" extension

Highly customizable Bootstrap themes

Works with SQLAlchemy, MongoEngine,
or Peewee

Designed to work with or without Flask-
Login and/or Flask-Principal

Admin in Flask

Admin in Flask

Flask-Security

Since many people use the same set of
extensions, "Flask-Security" wraps them
all up into a single package

User model, permissions, admin,  
login forms, password reset emails…

Works with SQLAlchemy, MongoEngine,
or Peewee

Comparison

Django's user framework & admin are
built-in, and work well

Flask requires multiple extensions
working together: steeper learning curve  
(but Flask-Security makes this easier)

Off-the-shelf vs extensive customization

Reusable Apps

Reusable apps can help organize and
simplify large codebases

All code related to one concept lives in one
place

Shared libraries to handle common tasks  
Example: user registration logic

How do Django and Flask compare?

Apps in Django

settings.INSTALLED_APPS	

Django Packages (djangopackages.org)

Many packages available; hard to
know which are good to use

Hard to organize an existing project
into multiple apps

http://djangopackages.org

Blueprints in Flask

Not quite the same as an app: blueprints are
instructions for how to extend an existing app

Can be applied multiple times to the same
app in different ways

Optional, but recommended for larger Flask
projects

Familiar syntax, easy to get started

Blueprints in Flask

from	flask	import	Flask	
app	=	Flask(__name__)	

@app.route("/")	
def	hello():	
				return	"Hello	World!"

Blueprints in Flask

from	flask	import	Blueprint	
hello_bp	=	Blueprint('hello',	__name__)	

@hello_bp.route("/")	
def	hello():	
				return	"Hello	World!"

Blueprints in Flask

from	flask	import	Flask	
from	yourapp.hello	import	hello_bp	

app	=	Flask(__name__)	
app.register_blueprint(hello_bp)

Comparison

Django apps are more
comprehensive, more numerous —
but also more complex

Flask blueprints are simpler,  
easier to integrate into a project

Building APIs

APIs are increasingly common for
web applications

APIs often require different patterns
compared to HTML webpages

How do Django and Flask compare?

APIs in Django

Django REST Framework. Just use it.

Authentication policies, serializers,
extensive documentation, testing
tools… it's all included

Multi-layered abstractions

APIs in Flask

Multiple extensions working together

Serialization: "Marshmallow" module

Marshmallow ecosystem includes
integrations with Flask, SQLAlchemy,
MongoEngine, etc

from	flask_marshmallow	import	Marshmallow	
from	flask_login	import	current_user,	login_required	
from	yourapp.models	import	User	

ma	=	Marshmallow(app)	

class	UserSchema(ma.ModelSchema):	
				class	Meta:	
								model	=	User	
								exclude	=	['password']	

@app.route("/me")	
@login_required	
def	me():	
				return	UserSchema().jsonify(current_user)	

#	{"id":	1,	"username":	"example",	"active":	true}

define
serialization
schema

convert to JSON

result

initialize extension

Comparison

Django REST Framework is amazing, but is
subject to the same restrictions as Django itself
(relational database, etc)

Flask has all the same functionality with much
more flexibility, but you have to put it together
yourself

Maybe someday there will be an extension
bundle for Flask that is similar to DRF: not yet

Which one do I choose?

Choose Django when…

You're happy with all the choices Django
makes for you:  
Django ORM, Django templates, etc

You're not doing anything unusual

You don't care to learn the details of how
things work, you just want something
that works

Choose Flask when…

You disagree with one of Django's
choices, and want to do things differently

You have unusual requirements that
require custom components

You want to understand how the
plumbing of your application fits
together

Any Questions?

David "DB" Baumgold  
@singingwolfboy

slides: bit.ly/djangocon-flask

Django vs Flask

